If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+2x=1
We move all terms to the left:
9x^2+2x-(1)=0
a = 9; b = 2; c = -1;
Δ = b2-4ac
Δ = 22-4·9·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{10}}{2*9}=\frac{-2-2\sqrt{10}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{10}}{2*9}=\frac{-2+2\sqrt{10}}{18} $
| 5x+1-6=x+3 | | 8-5=10-10r | | 6(x+2)-5=2x+4(1+x | | 16=-6w+4(w+7) | | 7(4x-8)=28x-56 | | 12(x+3.20)=54 | | 7(4x-8)=28x-58 | | 1/x^2+1/x^2+2x+1=1/x^2-x | | X^2+20=2^x | | 3(2x+1)-(x+2)=3(3x+4) | | b/9+1/2=19 | | (t−4)(16−t)+(t+8)^2=2t^2 | | (2x-3)/7+(3/7)=-x/3 | | -35+7r=3(7r-7) | | 2x+4=-7x+1 | | (t−4)(16−t)+(t+8)2=2t2 | | -3+4n=3n+8 | | 5x-2+3x=-10-5× | | (x/3)=21 | | 60x+153=9x=51 | | x÷0.7=160 | | (x*1.02)=530 | | x^2+81=-8x | | (2x-3)/7+3/7=-x/3 | | (x4-16)^4=0 | | -2=-8+3u | | 3+3(x+3)=6(x-2+9 | | x2-5x+6=0 | | y/9+8=4 | | 15u-7u=64 | | (10x+36)^(-2)=x-6 | | -4x+10=-5x=18 |